
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023795
TITLE: Floating-Point Computations on Reconfigurable Computers

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2007. High
Performance Computing Modernization Program: A Bridge to Future
Defense held 18-21 June 2007 in Pittsburgh, Pennsylvania

To order the complete compilation report, use: ADA488707

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023728 thru ADP023803

UNCLASSIFIED

Floating-Point Computations on Reconfigurable Computers

Gerald R. Morris
USACE Army Engineer Research and Development Center, Major Shared Resource Center (ERDC

MSRC), Waterways Experiment Station, Vicksburg, MS
gerald.r.morris@erdc.usace.army.mil

Abstract the design is created, and a synthesis tool translates the

HDL into netlist files. Netlists, which are essentially text-

Modern reconfigurable computers combine general- based descriptions of the schematic, are used by the

purpose processors with field programmable gate arrays target-specific place and route (PAR) and bit generation

(FPGAs). The FPGAs are, in effect, reconfigurable tools to create a configuration bit-stream. At each design

application-specific coprocessors. During one run, the stage, the functionality of the design can be verified via

FPGA might be a matrix-vector multiply coprocessor simulation. In theory, any digital logic circuit can be

during another run, it might be a linear equation solver, placed on an FPGA. In practice, the primary constraints

There are several issues associated with the mapping of are area, clock rate, and input/output (I/O).

floating-point computations onto RCs. There is the
determination of what the author terms "the FPGA design
boundary, " i.e., the portion of the application that is
mapped onto the FPGA. Furthermore, FPGA-based
kernel performance is heavily dependent upon both 1/0 blocks
pipelining and parallelism. The author has coined the
phrase "the three p's " to encapsulate this important
relationship. In this paper, important FPGA design

boundary heuristics are described, and a toroidal
architecture and partitioned loop algorithm are used to
maximize both pipelining and parallelism for a double- 0
precision floating-point sparse matrix conjugate gradient JM3 A C
solver that is mapped onto a reconfigurable computer. M 0
Wall clock run time comparisons show that the FPGA-
augmented version runs more than two times faster than
the software-only version.

CL LBB
1. Background

1 11O blocks
1.1. Field Programmable Gate Arrays Figure 1. FPGA architecture

Field programmable gate arrays (FPGAs) were 1.2. Reconfigurable Computers
invented in the 1980s by Ross FreemanE10 . As idealized
by Figure 1, these semiconductor devices contain
configurable logic blocks, fixed logic blocks (multipliers, The reconfigurable computer (RC) was invented by
memories, central processing units, etc.), a programmable Gerald Estrin 21 in 1960. An RC is a "fixed plus variable
interconnection mesh, and programmable input/output structure" computer that can be "temporarily distorted
(I/O) blocks. The FPGA is programmed via a into a problem oriented special purpose computer."
configuration bitstream to implement complex digital Because of technological limitations, RC research was
logic circuits. In the traditional FPGA design flow, a dormant for over 30 years. However, the FPGA has
hardware description language (HDL) representation of precipitated a renaissance, and RCs that use general-

purpose processors (GPPs) and FPGAs as the fixed plus

0-7695-3088-5/07 $25.00 © 2007 IEEE 339

variable structure are now available. A typical RC one or more n-vectors and reduce them to a single value.
architecture is shown in Figure 2. For applications that A binary tree of pipelined floating-point cores is a high
have some combination of large-strided or random data performance parallel architecture that accepts input
reuse, streaming, parallelism, or computationally vector(s) every clock cycle, and after the pipeline latency,
intensive loops, RCs can achieve higher performance than emits one result every clock cycle. To accumulate, say,
GPPs. To migrate FPGA-based development out of the eight numbers, one can use a binary tree with four adders
hardware design world and into the high-level language in the first stage, two adders in the second stage, and a
(HLL) programming world, there are HLL-to-HDL single adder in the third stage. However, because of
compilers that provide features such as pipelined loops FPGA area constraints, only small trees will fit on an
and parallel code blocks. The goal is to create deeply FPGA. Therefore, designers must translate large parallel
pipelined, highly parallelized designs without having to reductions into a sequence of smaller reductions and
deal with the detailed hardware design elements. In reduce the stream of values that are subsequently
concept, designers can develop an algorithm using C, for produced. Consider the dot product architecture shown in
example, and then compile it into a hardware design. In Figure 3. The n-vectors, x and y, are partitioned into k-
practice, a hybrid approach involving both HLL and HDL vectors, u and v. At each clock edge, one pair of k-
is often necessary. vectors enters the k-width dot product unit. When the

pipeline is full, the partial dot products, dj, stream out,
fixed PE variable structure one value per clock cycle. The values in this sequentially

delivered vector are accumulated by the adder to produce
GPP 0]=-" FPGA the dot product, (x, y). Unfortunately, since the adder is

pipelined, the loop introduces a multicycle stage, i.e., a
loop-carried dependence. Furthermore, to avoid
intermingling, the adder must be flushed after each vector.

loa These stalls result in poor performance and can lead to
main |memory buffer overruns. Thus, the reduction problem is to reduce

memory multiple sets of sequentially delivered floating-point
vectors without stalling the pipeline or imposing

S,*-unreasonable buffer requirements.

Figure 2. RC architecture 'U, V dj

., (U i i)

1.3. Sparse Matrix Performance

Applications involving sparse matrices can Y .
experience significant performance degradation on cache- -..

based GPPs. The quintessential example is sparse matrix-
vector multiply (SMVM), which has a high ratio of =4
memory references to arithmetic operations and suffers
from irregular memory access patterns. Over the last 30
years, researchers have tried to mitigate the poor Figure3. Reduction problem
performance of sparse matrix computations through
various approaches such as reordering the data to reduce 2. Design Considerations
memory bandwidtht1 3, modifying the algorithm to reuse
datatr1, and specialized memory controllers 12]. Despite 2.1. Three p's
these efforts, sparse matrix performance on GPPs is still
dependent upon the sparsity structure of the matrices. In In order for Mfz-rate FPGA-based designs to be
contrast, pipelined FPGA-augmented designs, which have competitive with GHz-rate GPP-based designs, the
single-cycle memory access, do not depend upon the kernels must be both pipelined and parallelized. This idea
sparsity structure of the matrix. is conceptually illustrated in Figure 4. The speedup

associated with pipelining approaches the pipeline depth
1.4. Reduction Problem (number of pipeline stages) if the pipeline can be kept

busy. The speedup associated with parallelization
Reductions, which occur frequently in scientific approaches the number of parallel paths. When both

computing, are operations such as accumulation that input pipelining and parallelization are used, the design realizes

340

a multiplicative speedup that can be symbolized via "the
three p's."

J%

pipelined
%

- .

IIIH lI7 III II T -, ,.,
I I I I .1 1 -1 .2 ', 3

~l I I I I I I
I G; N," 1 m1.2.2| ,

Performance c PipelinedxParallelized = -- -

Figure 4. Three p's

Figure 5. FPGA design boundary
2.2. FPGA Design Boundary

The FPGA design boundary deals with determining 3. Conjugate Gradient Solver
what elements in an RC-based design are mapped onto
the FPGA. As idealized in Figure 5, a designer could Conjugate gradient (CG), which was discovered in

choose to map a portion of a module, several modules, or 1952 by Magnus Hestenes and Eduard Stiefells], is

even the complete system onto the FPGA. As with many perhaps the best known iterative method for numerically

other engineering decisions, there are no hard and fast solving linear equations, Ax = b, whenever A is a

rules. 'Designers must rely on various heuristics. This symmetric positive-definite (SPD) matrix. A plot
section describes some of these heuristics, off(x) = ixTAxbTx, where A is an order n SPD

Obviously, one should consider the anticipated matrix, yields an (n+l)-dimensional concave-up parabolic
overall speedup. If a given module can be speeded up by surface as depicted in Figure 6. The x value that
a factor of 100 but only constitutes 1 percent of the run minimizes j(x) corresponds to the solution to Ax = b, i.e.,
time, there does not seem to be much value in mapping it the x value at the lowest point on the surface is the
onto an FPGA. In accordance with the three p's solution. A simplified version of the CG algorithm is
mentioned above, designers need to consider the extent to shown in Figure 7. The loop calculates the next value of
which the module can be both pipelined and parallelized. x (estimated solution), r (residual), and p (search
FPGAs have a limited amount of resources; therefore, the direction). Each iteration yields a better x by "walking
expected size should also be considered. Researchers downhill" in the A-orthogonal (conjugate) direction given
have shown that control-intensive applications such are by vector p. A convergence test, as idealized by the while
sorts do not map well onto FPGAs 4]. Unlike software- clause at line 5, causes the CG algorithm to terminate.
based modules, a hardware-based module cannot call
other modules, so designers need to either inline the call
functionality or make sure the module is a leaf node. f (x) xTAx - brx
Other design considerations include memory bandwidth,
the potential for data reuse, the design stability of the 2500-.
algorithm, the efficiency of the algorithm, etc. 2000"9 1500.

1000.500- xmn

0--500

0-5 0 -1 -5
1 1010 5X, 1

Figure 6. Quadratic form of a vector

341

1: algorithm CG(A, x, b) 3.2. FPGA-Based Matrix-Vector Multiply
2: x(°) x0
3: p(0) *- r(0) +- b - Ax (°) A block diagram of the FPGA-based SMVM
4: 15- 0 architecture is shown in Figure 9. It consists of a k-width
5: while (A is to big) do dot product core, an a-stage pipelined adder, a partial
6: q - Ap(°) reduction buffer (PRB), an output accumulator core, and
7: a - (rC , r(b))/(p C°), q) some on-chip and local memory banks. The input sparse
8: x(5+l) - x() + ap(b) matrix, A, is represented in compressed sparse row (CSR)
9: r & - r(b) + aq format via the three vectors:

10: /8- (r(6+ l), r(&t))/ (r(°', r(b)) . val - the row-wise matrix values;

11: p('+) - r(5) + BP(o * col - the column index of each value; and

12: 6-15+1 0 ptr - the position in the val vector where each
13: end while row begins.
14: end algorithm The basic algorithm for each row is to calculate a series of

partial dot products, dih, and reduce them to the single
Figure 7. CG algorithm value, y, = d= Z aox. . The k-width dot product

3.1. High-Level CG design unit accepts two double-precision floating-point k-vectors
every clock cycle. The u inputs from val correspond to

A profile of CG [7] shows that it spends over 97 the next k elements of the A matrix. The corresponding k

percent of the execution time in Sparse Matrix-Vector values from col ensure that the matching k elements of x

Multiply (SMVM) (line 6 of the CG algorithm), are sent to the v inputs. After the latency, a sequential

Furthermore, SMVM is a relatively small, compute- stream of partial dot products are emitted.

intensive monolithic code. Finally, for the given
application there is a significant potential for data reuse
since the A matrix is invariant during all CG iterations. k
Therefore, SMVM is the module.that was targeted for the A xdi
FPGA. The high-level CG design is shown in Figure 8. i(n v)
The main routine measures how long it takes for CG to k
solve each set of input equations, Aixi = bi. A compile- l
time decision selects the software-only or the FPGA-
based version of SMVM. The result vectors, xi, and ptr . c"trl
performance statistics, ®i, are written to output files. T-
Since the A matrix is invariant during the entire CG ax.
calculation, the FPGA-based SMVM, which will be PiG
described in the next section, pulls a copy of A one time FPGA

and stores it in local memory for subsequent iterations. Figure 9. SMVM processor
Amortization of the matrix transfer cost across all
iterations of CG is a key design feature. To reduce the partial dot products, there is an a-stage

pipelined adder and a constant-sized a-row by a-column
PRB. A round-robin scheduling algorithm guarantees an

'a-cycle interval between subsequent references to the
same memory location in S. The binary tree output

A I. Am b1 bm C9 X1i'. 1m 0 accumulator reduces completed rows of S to produce the
components of vector y. The easiest way to envision the

compile time round-robin partial summation algorithm is to view the
- deeision toroidal access pattern of the PRB shown in Figure 10.

The accumulation of a given input vector is restricted to a
MSMXV specific row, e.g., the gray row, within the PRB. Even if

there are more than a elements in the input vector, the
software FPGA major circumference of the torus (number of columns) is

Figure 8. CG design a, thereby ensuring that any previous data at a given
location, e.g., the black square, have already traversed the
adder and been written back by the time that location is

342

again referenced. If a series of small vectors are to be 4.2. Experimental Results
reduced, the minor circumference of the torus (number of
rows) ensures that by the time a row needs to be reused, For each matrix order, 1,000, 2,000, 3,000, and
its contents have already been sent to the output 4,000, three SPD matrices that have sparsity percent
accumulator and the row initialized to zero. This toroidal values of two, four, and six percent were generated. For
access pattern makes S appear to be an infinite two- example, the two percent sparsity test matrix for the n =
dimensional array, which can handle arbitrary sets of 1,000 case contains n, = n 2 x 2% = 106 x 0.02 = 20K
sequentially delivered vectors without stalling the nonzero entries. The resulting twelve SPD matrices were
pipeline. used as inputs for the two versions of CG. To capture the

entire system behavior including data transfer time to and
from the FPGA-based modules, the main routine was
instrumented with microsecond-resolution timers to

a capture the wall clock run time of the entire application.
Figure 11 compares the wall clock run time of the FPGA-
augmented version with the software-only version. For
the 1K(*) cases, which fit in the 512KB cache of the
Xeon, the software-only version of CG has the best
performance. However, for the remaining test cases, the
FPGA-augmented version of CG outperforms software.

CG Run Tune []t '

160

Figure 10. Toroidal access pattern of PRB a # = P
2 x 2%

120 trial #2: n: = j
2 x 4%

4. Implementation and Results trial#3: R. n'x6%

4.1. Target RC and Implementation.= ,
40 " -l

An SRC-6 MAPStation [9] was used as the target RC. ' n
It has dual 2.8GHz Xeon GPPs with 512KB cache and L _ _-g !L 13 El ...

IGB RAM. The MAP Series MPC processor contains
two Xilinx Virtex II 6,000 FPGAs running at 100MHz. ' !3 § § § ,. O) @
Each FPGA has 288KB of on-chip BRAM, and six banks n (trial 4)
of local memory provide an additional 24MB of memory.
The SRC Carte C compiler v2.1 and Xilinx ISE v7.2 were Figure 11. Run time comparison
used for the FPGA modules, and the Intel C compiler v8.1
was used for the software modules. The dot product unit 5. Future Work
and output accumulator were implemented using VHDL
and the IEEE-Std-754 double-precision floating-point A recurring limitation is the number of local memory
cores described in Reference 3. They were synthesized banks needed to provide the parallelism associated with
using Synplify Pro v8.1 and integrated into the Carte high performance FPGA kernels. Next-generation RCs
environment as user-defined macros. will have a significantly larger number of memory banks.

Since CG is difficult to implement properly8 1 , an off- The soon-to-be-released SRC-7, for example, supports 20
the-shelf implementation from the SPARSKIT" I' library simultaneous memory reads, as opposed to the 6
was used as a baseline. The optimized software SMVM simultaneous reads in the SRC-6. In addition, because of
that came with SPARSKIT was also used. The target RC the deeply pipelined floating-point cores used on FPGAs,
allowed for matrices up to order n = 4096. The limiting it is unlikely that the 100-fold speedups that have been
factor was the number of simultaneous local memory demonstrated for integer applications can be achieved for
reads. It was necessary to store some vectors, e.g., x, in floating-point applications. However, 10-fold overall
the FPGA block memories. Future RCs will likely have a speedups may be possible. The most obvious future work
larger number of local memory banks that can handle is to reconsider the current designs by moving the on-chip
significantly larger problems. stores into the local memory banks and to increase the

343

data path width (parallelism). These two considerations 4. Harkins, J., T. El-Ghazawi, E. El-Araby, and M. Huang,
should result in significant speedups and accommodate "Performance of sorting algorithms on the SRC 6 reconfigurable

much larger matrices, computer." In Proceedings of the 2005 IEEE International
Conference on Field-Programmable Technology (FPT'05)
Singapore, pp. 295-296,, December 2005.

6. Conclusions 5. Hestenes, M. and E. Stiefel, "Methods of conjugate gradients
for solving linear systems." Journal of Research of the National

In this paper, important FPGA design boundary Bureau of Standards, 49(6), December 1952.
heuristics are described, and a toroidal architecture and 6. Im, E.J., K.A. Yelick, and R. Vuduc, "SPARSITY: An
partitioned loop algorithm are used to maximize both optimization framework for sparse matrix kernels."
pipelining and parallelism for a double-precision floating- International Journal of High Performance Computing

point sparse matrix conjugate gradient solver that is Applications, 18(1), February 2004.

mapped onto a reconfigurable computer. Wall clock run 7. Morris, G.R., R.D. Anderson, and V.K. Prasanna, "A hybrid
time comparisons show that the FPGA-augmented version approach for mapping conjugate gradient onto an FPGA-

runs more than two times faster than the software-only augmented reconfigurable supercomputer." In Proceedings of
version. the 14th IEEE Symposium on Field-Programmable Custom

Despite the limitations in the current generation RCs, Computing Machines, Napa, CA, USA, April 2006.

this work and related research efforts provide strong 8. O'Leary, D. M, "Methods of conjugate gradients for solving
that FPGA-augmented RCs may be the next linear systems." In D.R. Lide, editor, A Century of Excellence in

evidence that forA-agetedoating-yoint he ne Measurements, Standards, and Technology A Chronicle of
wave in the quest for higher floating-point performance. Selected NBS/NIST Publications, 1901-2000, NIST Special

Publication 958, 2001.
References 9. SRC Computers, Inc., General purpose reconfigurable

computing systems, http://www.srccomp.com.

1. Cuthill, E. and J. McKee, "Reducing the bandwidth of sparse 10. Xilinx, Inc., How Xilinx began. In Xilinx: our history,
symmetric matrices." In Proceedings of the 1969 2 4th National http://www.xilinx.com/company/history.htm, 2006.
Conference of the ACM, San Francisco, CA, USA, August 1969. 11. Saad, Y., "SPARSKIT: a basic tool kit for sparse matrix
2. Estrin, G., "Organization of computer systems-the fixed plus computations." http://www-
variable structure computer." In Proceedings of the Western users.cs.umn.edu/-saad/software/SPARSKIT/sparskit.html, June
Joint Computer Conference, San Francisco, CA, USA, May 1994.
1960. 12. Zhang, L., Z. Fang, M. Parker, B.K. Mathew, L. Schaelicke,

3. Govindu, G., R. Scrofano, and V.K. Prasanna, "A library of J.B. Carter, W.C. Hsieh, and S.A. McKee, "The impulse
parameterizable floating-point cores for FPGAs and their memory controller." IEEE Transactions on Computers, 50(11),
application to scientific computing." In Proceedings of the November 2001.
International Conference on Engineering Reconfigurable
Systems and Algorithms, Las Vegas, NV, USA, June 2005.

344

